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Electronic Supplementary Material 

1. Supplementary Methods 

Each of the 31 predictor variables was analyzed at a spatial resolution of 30 arc-seconds, which 

is approximately 1 km2 in Sankuru (longitude: 21° 40' 10'' – 25° 11' 41'' E, latitude: 1° 41' 30'' - 

5° 57' 1'' S). 

1.1. Climatic data 

Climatic variables were selected for inclusion in this study because previous work hypothesized 

that precipitation was important for predicting monkeypox incidence (Levine et al. 2007). Our 

climatic data included annual means of precipitation and temperature as well as seasonal 

extremes, all of which are important determinants of biodiversity (Nix 1986; Farber and Kadmon 

2003) (see Table 4 of this document). The climatic data was constructed via interpolation from a 

50 year time series of weather station records with a thin-plate spline that incorporates elevation, 

latitude, and longitude as covariates (Hijmans et al. 2005). The weather stations include such 

sources as the Global Historical Climatology Network (GHCN), the United Nations Food and 

Agricultural Organization (FAO), the World Meteorological Organization (WMO), the 

International Center for Tropical Agriculture (CIAT), and additional country-based station 

networks (Buermann et al. 2008). These climate data have been applied previously to predict the 

geographic distributions of other viruses (e.g. Calvete et al. 2008, 2009; Schafer and Lundstrom 

2009; Ward et al. 2009). 

1.2. Human population data  

Our analysis included human population density in order to test the hypothesis that population is 

a proxy for what people eat and hunt and the rate of contact between people and the wildlife 

reservoirs of monkeypox. We hypothesized that per capita monkeypox would go up with 
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decreasing population density because the rate of contact between people and wildlife would be 

greater in rural areas. 

 We incorporated estimates of Sankuru’s population based on the LandScan model, which 

utilizes satellite data from the year 2008 (such as night-time lights) to identify human settlements 

and infers population density at the 1 km2 resolution by extrapolating from the best available 

census data (Dobson et al. 2000; Vijayaraj et al. 2007). For details on acquiring the LandScan 

data set, see http://www.ornl.gov/sci/landscan/. These population data have seen frequent use in 

modelling the geographic distributions of infectious diseases (e.g. Tatem and Hay 2004; Peterson 

2009). LandScan estimates the number of people that travel through an area in a given day in 

addition to the area’s night-time residents. As a result, the population estimates used here may be 

somewhat larger than models that are only based on night-time residents. Nevertheless, 

LandScan is considered one of the most accurate and widely-utilized global population data sets 

(Potere et al. 2009).  

 Population density was not included in our regression model insofar as the first three 

principal components did not assign a large weight to population. Thus, we could not 

quantitatively assess the hypothesis that per capita monkeypox is greater in areas with low 

population density. However, we incorporated population into the analysis qualitatively by 

creating a map of the population density of Sankuru overlaid on a map of the probability that site 

is in the ecological niche of the virus (Figure 5(c) of the main text). 

1.3. Vegetation data 

We utilized seven variables from a variety of satellite sensors that measure the properties of 

forest vegetation including canopy closure (Hansen et al. 2002), canopy roughness (Long et al. 

2001), deciduousness, greenness (Huete et al. 2006), leaf area (Myneni et al. 2002), and 
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normalized difference vegetation index  (see Table 5 of this document). Previous work has 

demonstrated a high correlation between ground-based measurements of forest properties and 

these remote-sensed variables (for details, see Saatchi et al. 2007; Buermann et al. 2008). Our 

vegetation data were constructed from satellite images in publicly-available databases such as the 

NASA Warehouse Inventory Search Tool (WIST; 

https://wist.echo.nasa.gov/~wist/api/imswelcome/) and the NASA Scatterometer Climate Record 

Pathfinder (http://www.scp.byu.edu/). The vegetation variables and the other predictor variables 

used in this analysis are available upon request. 

 Sites that were predicted to be in the rope squirrel’s ecological niche had a median 

canopy closure of 70% and high values for the leaf area index (5.5) and radar backscatter (-7.6 

dB), indicating that typical rope squirrel habitat is comprised of dense secondary forest. Sites 

predicted to be in the ecological niche of the monkeypox virus had significantly greater forest 

canopy cover, leaf area index, and radar backscatter than sites not predicted to be suitable for 

monkeypox (tcanopy cover=-337.37, tleaf area index=-264.24, tbackscatter = -139.3, in each case p < 2.2 x 

10-16). Sites with high canopy cover, leaf area index, and backscatter generally represent primary 

forests or relatively dense secondary forests. 

1.4. Monkeypox reservoir data  

We constructed ecological niche models for four rodents hypothesized to be monkeypox 

reservoirs: rope squirrels (Funisciurus species, family Scuridae), African dormice (two species: 

Graphiurus crassicaudatus and G. lorraineus, family Gliridae), and giant pouched rats 

(Cricetomys species, family Nesomyidae). These taxa were selected due to the fact that 

molecular tests have confirmed that these four taxa were infected with the monkeypox virus 

during the US outbreak (Hutson et al. 2007) and for the reasons elaborated in the Introduction of 



4 
 

the main text, such as the goal of assessing whether terrestrial rodents are important reservoirs in 

West Africa but not Central Africa. We obtained data on the occurrences of the four reservoirs 

from the Mammal Networked Information System (MaNIS) (Stein and Wieczorek 2004; 

Wieczorek et al. 2004) and a recent monograph on Graphiurus dormice (Holden and Levine 

2009). These occurrences represent geo-referenced specimens from museum collections.  

 To predict the geographic distribution of the reservoir species, we utilized eleven 

predictor variables that measured climate, land cover, and topography. We selected these 

predictor variables because they were used in a previous study that estimated the geographic 

distribution of African dormice (Holden and Levine 2009) and we wanted to validate our models 

through comparison with that study. Six of these variables were also used to predict monkeypox 

occurrence: annual mean temperature, elevation, maximum temperature of the warmest month, 

mean diurnal range, minimum temperature of the coldest month, and total annual precipitation. 

However, five of the variables were not in the set used to model the ecological niche of 

monkeypox: compound topographic index (CTI), flow accumulation, flow direction, land cover, 

and topographic aspect. The predictor variables and the species’ occurrence data served as the 

input for a machine-learning algorithm, Maxent (Phillips et al. 2006; Phillips and Dudik 2008), 

which predicted the geographic distribution of the four rodent reservoirs in Sankuru at the 1 km2 

scale. We selected Maxent because there were few occurrences (n  32) for each reservoir, and 

Maxent has been shown to perform well with little data (Wisz et al. 2008; Williams et al. 2009). 

For Funisciurus rope squirrels and Cricetomys pouched rats, we modeled the distribution of the 

genus because the number of available occurrences of any one species in the genus was 

insufficient to develop an accurate model of the species’ niche. We applied the workflow shown 

in Figure 4 of the Electronic Supplementary Material to each taxon one at a time. Table 3 of the 
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Electronic Supplementary Material lists the most important environmental variable for 

determining the ecological niche of each monkeypox reservoir. Following established protocols, 

the accuracy of the distributional models was assessed by using 75% of the occurrences to 

predict the ecological niche of the reservoir, then measuring the AUC of the resulting model on 

the withheld 25% of the occurrences (Pawar et al. 2007). 

1.5. Further analysis of the second principal component (PC2) 

Our best regression model explains monkeypox occurrences as a function of rope squirrel habitat 

suitability and forest cover (PC2). Since PC2 is a combination of forest cover and rope squirrel 

habitat suitability, this raises the questions of whether rope squirrel habitat might be a significant 

predictor of monkeypox even without accounting for forest density and whether rope squirrel 

habitat is more important than dormouse or pouched rat habitat. To address these questions, we 

repeated the logistic regression using only rope squirrel habitat suitability, dormouse suitability, 

and pouched rat suitability as predictors of human monkeypox cases. In this comparison, only 

the rope squirrel was significant for predicting human monkeypox cases (rope squirrel: χ2 = 5.18, 

p = 0.023; dormouse G. crassicaudatus: χ2 = 0.073, p = 0.79; pouched rat: χ2 = 1.35, p = 0.25). 

We report a comparison between only one dormouse and the rope squirrel because the two 

dormice were collinear with each other but uncorrelated with the rope squirrel (  

Pearson’s  ). However, comparing both dormice to the rope squirrel yielded similar 

results. Thus, the rope squirrel remains a more important predictor of human monkeypox than 

the African dormouse or the pouched rat independent of the effects of forest cover. 
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 PC2 explains less of the variance in the independent variables than PC1 (14.8% vs. 45%). 

Nevertheless, a regression model comprised of PC2 explains more of the variance in the 

dependent variable, human monkeypox cases, than a model comprised of PC1. 

1.6. Validation of the regression model on new data 

The logistic regression model was validated using the library Design 2.3-0 in R 2.9 (Harrell 

2009). We split the data into a test and training set then measured the accuracy of the model that 

was constructed from the training set by assessing how well it performed on the test set. In 

particular, we computed the absolute value of the difference between the predicted probabilities 

and the observed data (hereafter “absolute error”) with a standard technique for validating 

logistic regression models (Miller et al. 1991). The absolute error on the test set in 1,000 

bootstrap replicates was 7%, which is sufficiently small that we can conclude that our model of 

monkeypox risk in Sankuru is accurate. 

1.7. Comparison of the Maxent and logistic regression predictions about human 

monkeypox in Sankuru. 

We implemented a standard technique for comparing two spatial data sets, the weighted kappa 

test (Cohen 1960; Siegel and Castellan 1988; Richards and Jia 2006), to quantify the similarity 

between the logistic regression and Maxent predictions. For each of the two models, we divided 

the predicted probabilities of monkeypox incidence into four classes based on quantiles. Next, 

we constructed a confusion matrix that listed the number of pixels that were assigned to the same 

class by both Maxent and logistic regression. The matrix was analyzed with a weighted kappa 

test in which the null hypothesis is that there is no agreement between the logistic regression and 

Maxent predictions. The data are compatible with the alternative hypothesis of significant 
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agreement between the Maxent and logistic regression models (for the test statistic and p-value, 

see the Results section of the main text). 
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Electronic Supplementary Material Figures  

Figure 1. Scatterplot of the monkeypox data in the space of the first and third principal 

components. Figures 1 and 2 of the Supplementary Material depict the weights assigned to each 

variable in each PC. PC1, which is labelled “Factor 1” in the figure, represents precipitation in 

lowlands that contain habitat for the African dormouse. PC3 represents temperature. B1 = annual 

mean temperature, B2 = mean diurnal range, B3 = isothermality, B4 = temperature seasonality, 

B5 = maximum temperature of the warmest month, B6 = minimum temperature of the coldest 

month, B7 = temperature annual range, B8 = mean temperature of the wettest quarter, B9 = mean 

temperature of the driest quarter, B10 = mean temperature of the warmest quarter, B11 = mean 

temperature of the coldest quarter, B12 = annual precipitation, B13 = precipitation of the wettest 

month, B14 = precipitation of the driest month, B15 = precipitation seasonality, B16 = 

precipitation of the wettest quarter, B17 = precipitation of the driest quarter, B18 = precipitation 

of the warmest quarter, B19 = precipitation of the coldest quarter, CRASSI = the probability that 

a 1 km2 site is in the ecological niche of the African dormouse Graphiurus crassicaudatus, 

CRICETO = the probability that a site is in the ecological niche of Cricetomys giant pouched 

rats, EL = elevation, FUNI = the probability that a site is in the ecological niche of Funisciurus 

rope squirrels, LOR = the probability that a site is in the ecological niche of the African 

dormouse Graphiurus lorraineus, NDVIMX = maximum normalized difference vegetation 

index, NDVIGR = normalized difference vegetation index of wet months, LAIMX = maximum 

leaf area index, POP = human population density, QSM = mean radar backscatter, which is a 

measure of forest canopy structure, QSSD = standard deviation of radar backscatter, VCF = 

forest canopy closure. 
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Figure 2. Scatterplot of the monkeypox data in the space of the first and second principal 

components. PC1 represents precipitation in lowlands that contain habitat for the African 

dormouse. PC2 represents forest vegetation in Sankuru that is in the ecological niche of 

Funisciurus rope squirrels. The abbreviations listed in the scatterplot are defined in the caption 

of Figure 2 of the Electronic Supplementary Material. PC1 is highly correlated with annual 

precipitation (r = 0.85) and anti-correlated with elevation (r = -0.71). PC2 correlates with the 

measures of forest vegetation: percent closure of the forest canopy (r = 0.94), mean radar 

backscatter (r = 0.94), leaf area index (r = 0.96), and NDVI (r  0.92). In addition, there is a 

high correlation between PC2 and the probability that a site is in the ecological niche of 

Funisciurus rope squirrels (r = 0.88). PC3 correlates with annual mean temperature (r = 0.99). 

Figure 3. Using the epidemiological  triangle to analyze human monkeypox cases. 

Figure 4. Workflow for constructing a model of the ecological niche of a reservoir of 

monkeypox in Sankuru. The gray box lists the 11 environmental variables that were used in the 

construction of a niche model for each reservoir species. “Aspect” refers to the direction that a 

slope faces, which affects the incident solar energy available for photosynthesis. Compound 

topographic index (CTI) is a measure of the tendency of a site to pool water. Flow accumulation 

is an estimate of how much water will flow into a 1 km2 site based on a hydrological model. 

Flow direction measures the direction in which a river or stream would flow upon leaving a site. 

The environmental variables were used along with reservoir occurrence data from MaNIS and 

Holden & Levine (2009). The environmental variables and the occurrences of the reservoir 

became the input for Maxent, which constructed a model of the ecological niche of the reservoir 

in Sankuru at the 1 km2 scale. 
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Figure 5. Ecological niche models of potential monkeypox reservoir species. These models 

were constructed using the workflow described in Figure 4. The models of distributions of the 

African dormice G. crassicaudatus and G. lorraineus are concordant with previously-published 

models of the ecological niches of these species in Africa (Holden and Levine 2009). Sites 

shown in black are predicted to be in the ecological niche of the reservoir, whereas white sites 

are not predicted to be part of the niche.
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Electronic Supplementary Material Figure 1. 
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Electronic Supplementary Material Figure 2. 
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Electronic Supplementary Material Figure 3. 
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Electronic Supplementary Material Figure 4. 
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Electronic Supplementary Material Figure 5. 
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Electronic Supplementary Material Tables 

Model AIC ∆i

Intercept only 1614 7 
Intercept + principal component two 1607 0 

 

Table 1. Models analyzed during the variable selection procedure. We utilized a standard 

automated variable selection procedure implemented in LOGISTIC procedure in SAS 9.2 for 

Windows (Montgomery et al. 2006). The procedure iteratively selects variables to be included in 

or removed from the regression model based on a 0.05 significance level. In the first iteration of 

the algorithm, only the intercept was included in the model. The second principal component was 

added to the model in the second iteration of the variable selection procedure. AIC = Akaike 

information criterion. The smaller the AIC, the better the model. The AIC selects models that are 

the best combination of goodness-of-fit and parsimony insofar as it penalizes models with an 

excessive number of terms, which may overfit the data. ∆i is the level of empirical support for 

model i, defined as the difference between the AIC of model i and the smallest AIC of any model 

(Burnham and Anderson 2002). When ∆i is less than two, there is considerable support for a 

model. There is considerably less support for a model when ∆i = 7 (Burnham and Anderson 

2002). Thus, the model that explains human monkeypox cases as a function of forest vegetation 

and habitat suitability for the rope squirrel (principal component two) has substantially more 

empirical support in the Sankuru data than a model comprised of only the intercept.  
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Variable 
Precipitation in lowlands 0.41 
Habitat suitability for the rope 
squirrel/forest density 

0.8 

Temperature 0.28 
 

Table 2. Akaike weights for the predictor variables. Eight possible models can be constructed 

from the three predictors variables that we analyzed: precipitation in lowlands, habitat suitability 

for the rope squirrel/forest density, and temperature. For each model, we computed the AIC and 

the Akaike weight, , where  represents the set of all models.  is 

interpreted as the relative likelihood of a model. Next, to assess the relative importance of the 

three predictors, we computed the Akaike weight for the  variable, . The Akaike weight 

of a variable is defined as the sum of the Akaike weights of the models in which the variable 

occurs. The larger  is, the more important variable  is relative to the other variables. The 

variable that represents habitat suitability for the rope squirrel had the largest Akaike weight of 

any variable. The magnitude of this weight, 0.8, indicates that there is strong evidence that this 

variable is important relative to the other variables that we considered. In particular, the variable 

that represents rope squirrel habitat suitability had a weight that was twice as large as the weight 

of any other variable. This supports the claim that rope squirrel habitat suitability is more 

important for predicting human monkeypox cases than the others variables that we analyzed 

(such as temperature or precipitation). For a review of Akaike weights, see Burnham and 

Anderson (2002). 
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Reservoir species or genus Common name Most important variable 

Cricetomys species Giant pouched rat  Maximum temperature of the warmest 
month 

Graphiurus crassicaudatus  African dormouse Minimum temperature of the coldest 
month 

Graphiurus lorraineus  African dormouse  Total annual precipitation 

Funisciurus species Rope squirrel  Land cover 

 

Table 3. Most important variables for predicting the niches of monkeypox reservoirs. 

Variable importance was assessed by measuring the percent contribution of each variable to the 

Maxent model (Phillips et al. 2006). 
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Table 4. Climate data used to predict human monkeypox (19 variables). For details, see 

Section 1.1 and references therein. 

Climatic parameter Units Minimum Maximum
Annual mean temperature °C 15.8 26 
Mean diurnal range (mean of monthly maximum 
temperature – minimum temperature) 

°C 9.3 12.3 

Isothermality (mean diurnal range / temperature annual 
range) 

Dimensionless 0.7 0.9 

Temperature seasonality (temperature standard deviation / 
mean temperature) 

Dimensionless 2.42 7.46 

Maximum temperature of the warmest month °C 21.4 32.9 
Minimum temperature of the coldest month °C 9.8 20.1 
Temperature annual range (maximum temperature of the 
warmest month – minimum temperature of the coldest 
month) 

°C 10.8 16.8 

Mean temperature of the wettest quarter °C 16 26 
Mean temperature of the driest quarter °C 15.3 25.9 
Mean temperature of the warmest quarter °C 16.1 26.6 
Mean temperature of the coldest quarter °C 15.3 25.5 
Annual precipitation (total) mm 1115 2182 
Precipitation of the wettest month mm 149 303 
Precipitation of the driest month mm 9 78 
Precipitation seasonality (precipitation standard deviation / 
mean precipitation) 

Dimensionless 18 70 

Precipitation of the wettest quarter mm 412 804 
Precipitation of the driest quarter mm 17 443 
Precipitation of the warmest quarter mm 156 656 
Precipitation of the coldest quarter mm 17 644 
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Table 5  - Vegetation data obtained from remote sensing used to predict human monkeypox (7 original variables). For details, 

see Section 1.3 and references therein. 

 

Data record Remote sensing (RS) sensor Vegetation/landscape 
parameter 

RS metrics at 1 km resolution 

Monthly Normalized Difference 
Vegetation Index (NDVI) in 2001 

MODIS Vegetation type and seasonality NDVI-1: maximum NDVI 

   NDVI-2: mean NDVI wet months 
Monthly (2000-2004) leaf area 
index (LAI) 

MODIS Vegetation type, seasonality, and 
productivity  

LAI: maximum LAI 

Percent tree cover (derived from 
the original 500m data) 

MODIS Forest cover, heterogeneity VCF: continuous field product 

Scatterometer backscatter 
(horizontal polarization) 
Monthly composites in 2001 
interpolated from the original 
2.25 km data 

QuikSCAT Canopy roughness, leaf/wood 
density, and vegetation 
deciduousness 

QSCAT-M: mean backscatter  

   QSCAT-S: standard deviation of 
backscatter 

Digital elevation (derived from 
the original 90 m resolution) 

SRTM Surface elevation SRTM-HGT: mean elevation 
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